COURSE: MDM 4U Grade 12 Mathematics of Data Management

THEORETICAL PROBABILITY

Theoretical Probability → the ratio of the number of outcomes that make up an event to the total number of possible outcomes.

P(A) =	n(A)		
1 (21)—	n(S)		

A: set of outcomes deemed successful.

S: set of all possible outcomes (sample space).

n(A) or n(S): the number of elements in each set.

- $P(\overline{A})$: Probability of event A not occurring.
- $P(\overline{A}) = 1 P(A)$: Probability of a compliment event.
- If A is a set of outcomes in S, then \overline{A} is the set of outcomes in S, that are not in A.
- Notations for complement to set $A: A^c, \overline{A}, A'$
- Note: $n(A) + n(\overline{A}) = n(S)$

Ex1. A bag contains 5 blue, 3 red, and 2 yellow blocks. One block is randomly selected. Find:

a)
$$P(blue) =$$

b)
$$P(red) =$$

c)
$$P(\overline{red}) =$$

Ex 2. In a deck of cards, one is randomly selected. Find:

a)
$$P(facecard) =$$

b)
$$P(\overline{facecard}) =$$

Ex 3. Two coins are tossed. Find the probability of:

a) both heads

b) one head and one tail

COURSE: MDM 4U Grade 12 Mathematics of Data Management

Ex 4. Four coins are tossed. Find the probability of: (use a Tree Diagram)

a) 3 heads and 1 tail

b) 4 tails

c) 2 heads and 2 tails

Ex 5. Two dice are tossed. Find the probability of each element.

a) A: sum is 11

b) B: dice outcome differ by 3

c) C: exactly one die is a 5

d) D: neither die is a 5

e) E: $P(\overline{A})$

Sum		Die 1					
		1	2	3	4	5	6
Die 2	1						
	2						
	3						
	4						
	5			,			
: *	6						